
MCU Deep Sleep

Introduction

Electronics require electric energy to function. For most uses, it is as simple as plugging a device into a
socket in the wall. For other scenarios, this energy is not readily accessible, and must be accumulated
through a generator; with solar panels being a commonly chosen option.

In a grid-connected situation a certain price is charged for the power used, usually expressed in
a price per kWh (kilo-Watt-hour). Devices connected to the grid, like household electronics, then use
a certain capacity per hour, which can be seen in the electricity bill. For this reason, standby modes
have been introduced. By regulation in the EU, these devices do not require more than one Watt in
this mode, which, compared to the device turned fully on, is insignificant, and is more user-friendly
(quick to respond or activate) compared to a fully shutdown device.

In an off-the-grid situation, electric power cannot be assumed to be generated at all times. This
requires a battery to store excess energy for the situation where the generator is offline. Since these
electronic devices can consume great amounts of energy (even when not actively following an instruc-
tion set), it is imperative that the device is set to an inactive state to preserve the battery capacity for
the duration of the inactivity of the generator. This one of the reasons for the introduction of sleep
modes for microprocessors, controllers and other chip-controlled devices.

Power Consumption in Electronics
What is electric energy; what is electric power? Without having to grasp the physics behind it, the
concept is quite simple to understand. Where energy can be defined as the capacity to ’do’ (or equiv-
alently, the required capacity for something to be done), power is the energy consumption over time,
measured in Watts (W). Power is thus the rate at which that capacity is spent. An alternative unit for
power is horsepower, although it is generally only used for mechanical propulsive power.

When considering the electric energy and power, two more variables arise: the potential difference,
or voltage (V), and charge flow rate, or current (A). Multiplying the Voltage with the current gives the
power consumed by a component or circuit.

Although the SI unit of energy is Joule (J), more commonly used units are Watt-hours (Wh) and
Ampère-hours (Ah). The name says it for both: a Watt-hour is the capacity to sustain a Watt of power
for an hour; an Ampère-hour is one Ampère sustained for an hour. To get the ’Wh’ rating of an Ah-rated
battery, the Ah value must be multiplied by the nominal output voltage.

Power Reduction
In the situations where the battery power is insufficient for continuous operation of the device, some
power savings must be made at the expense of operational functionality. This is referred to as standby,
or sleep, and exists in multiple tiers. These tiers, or modes, range from an idle state, where the device
is operating with its entire capacity without activity, to deep sleep, where the waking-up can take
multiple thousands of clock cycles.

An example of these modes can be as simple as your laptop display turning off after a configurable
amount of time. Before the display can be used again, an interrupt (keystroke, lid opening, or mouse
click) must be performed before the display is sent the ’wake-up’ command by the processor. Chances
are that the processor itself was also in a sleep mode to increase energy savings and component
lifetime.

Contrary to the previous example, deep sleep mode can also require switching off the RAM (random
access memory, a very fast but volatile data storage used for the active programs). To prevent data
loss, storing the most recent RAM state to non-volatile memory, such as flash memory is then necessary.
This then allows the processor to turn off RAM and flash memory for energy savings without losing the
instruction set, before going to sleep itself.

1

2

LoRaWAN and Sleep
Enter LoRaWAN, where devices with sensors and actuators attached need to exchange data over some
distance with gateways through radio communication. This LoRa protocol is designed to function with
low-power transmission at a moderate bit-rate and low duty-cycle. low power and low duty-cycle? It
sounds like sleep mode fits right in the picture! Between the data communication cycles, the device
idles. Why not sleep if we’re not doing anything?

Internet of Things devices can be the cheapest tailored approach for sensing and actuating solutions.
These devices can be placed in hard-to-reach places to provide insight in phenomena that are otherwise
impossible or expensive to monitor: this is not limited to submerged or subterranean installations,
where LoRaWAN can become the data transfer protocol of choice.

Since LoRa sets a maximum air-time duty cycle per sending device, in addition to the power re-
quirement for sending data being extremely high compared to the rest of the device operations.

In order to operate longer periods of time without access to energy sources, low-power optimized
operation is a design requirement: this is where sleep modes come into play: energy savings are
created by putting the sensors to sleep (or turning them off entirely), followed by the processor entering
sleep mode. Current draw can then be limited from mA range to 𝜇A range (this increases the battery
endurance by a hundredfold, upwards to a thousandfold).

To put this in perspective: a 250mAh battery, supplying a nominal voltage of 3.7V (925mWh) can
sustain a current draw of 15mA for 16 hours, whereas the same battery can sustain a current draw of
500𝜇A for 500 hours. If the device is properly optimized, a current draw of approximately 30𝜇A can
be reached, which can run continuously for 8000 hours!

Deep Sleep Theory

How does deep sleep, in itself, work? A microprocessor processes tasks, mostly based upon a clock
signal. Without this clock, a microprocessor comes to a standstill, and stops using power almost
completely. Once a clock is stopped, however, the processor requires a clock signal to process a wake
up call.

Deep Sleep Processes
Clock signal structure in a microprocessor starts at the oscillator; often a crystal. This is passed on
(possibly divided) to the GCLK (Generic Clock Controller, consisting of Generic Clock Generators and
Multiplexers), which then divided to provide a lower frequency and passed on to the CPU core, power
manager and peripherals.

Why are clocks so important for power use? The answer lies with their power consumption, and
the power consumption as a result of these clocks. For this reason, the clocks are usually rated at a
current draw per MHz (or other frequency step). A 48 MHz clock then requires 24 times more power
at 48 MHz, than it does when running at 2 MHz.

In order to then initiate sleep, all but the lowest frequency clock is shut down (usually a 32.768 kHz
clock that is designed for low power, rather than high accuracy). This means that the processor comes
to a standstill, with the interrupt controller monitoring the clock signal and interrupts.

Hence, the microprocessor shuts down almost entirely in deep sleep. Lighter sleep may be initiated
where a higher frequency clock is kept active (1 MHz, for example).

In some processors, peripherals such as watchdog timers (WDT) and real-time clocks (RTC) are viable
interrupts that can run off the low power clock signal. These are, besides the interrupt controller, low
power clock and GCLK, the only components that remain awake.

Wake Up!
Now that the device is asleep, we must be able to wake it up again; otherwise there is no point to
sleeping. Waking up the processor is generally dependent on the sleep mode. In almost all scenarios,
however, waking up the processor requires an interrupt. This can be any interrupt on a physical pin,
or an interrupt generated by the previously mentioned peripherals, namely the watchdog timer and
real-time clocks.

Some microprocessors also support sleepwalking, where actions are performed at a lower frequency
clock, but without fully waking the processor; a simple receive over serial and write to buffer would be
an example action that can be performed in sleepwalking mode.

Different Platforms
Generally, all microprocessors are capable of some form of sleep mode, however this is largely depen-
dent on the microprocessor, clock structure and the designer of the processor. The processor datasheet
usually provides instructions on how to invoke sleep state, and how to wake it up again.

The SODAQ ExpLoRer used in the tutorial utilizes an Atmel SAMD central processor, which allows a
custom sleep ’mask’.

A standard AVR-based processor, such as the Atmega 328P (as used in the Arduino Uno and Nano)
are capable of power reduction modes. The named Atmega 328P datasheet, for example, claims an
active power of 0.3 mA, a power-save mode (with RTC active) of 0.8 𝜇A, and a full powered down
leakage current of 0.1 𝜇A.

Similarly, The Things Uno utilizes an AVR-based processor, namely the ATmega 32U4. Its datasheet
specifically provides instructions on how to invoke sleep modes.

3

4

Single versus Multiple Processors
Multi-processor boards differ from single processor boards in that there is a single ’central’ processor.
In computing and electronics, this is generally referred to as the CPU.

Invoking the overall sleep mode, requires the CPU to send instructions to the other processors,
detailing that a sleep mode must be invoked, before going to sleep itself. An example of such an external
processor is the LoRa module, run by a controller loaded with firmware specifically for its operation; a
certain sleep sequence and wake-up sequence are detailed in the list of many communication sentences
that can be sent between the CPU and LoRa module.

Sometimes, however, invoking sleep mode can be as simple as asserting or de-asserting a (shared)
pin (asserting means setting to logic high), but may also be a combination of the two.

ExpLoRer Tutorial

The SODAQ ExpLoRer is a board developed by SODAQ on behalf of Microchip, as a LoRa development
and implementation board (hence the name ’explorer’). The ExpLoRer board was designed to have
low power consumption. Before this is achieved, however, some of the components on the ExpLoRer
need to be configured for low power mode or disabled.

Before continuing, ensure that the SODAQ SAMD Boards file is installed (through the Boards Manager
in the Arduino IDE). Before it can be installed, the following URL must be added to ”Additional Boards
Manager URLs” in the IDE’s preferences:

ht tp : / / downloads . sodaq . net / package_sodaq_samd_index . Mson

Once this is done, it should be noted that when attempting to upload code to the ExpLoRer, the
RESET button must be pressed twice within a second when powered on. The blue LED should turn on,
indicating that the device is in boot-loader mode.

The ExpLoRer is loaded with a bootloader that allows you to upload code via USB at power-up. In
the rare case that it fails, double pressing the RESET button within a second triggers the bootloader
mode as well. The blue LED near the RESET button should turn on; an indicator to show that the
device is in bootloader mode.

Figure 1: The quickest start-up for the ExpLoRer takes 13 seconds, consuming 13.3mA on average over that period!

Identifying the active components
Before starting to program the ExpLoRer for deep sleep, we must identify what components are on the
board. Often, the manufacturer specifies some or all components used, or provides schematics of some
sort. If that is not the case, the board may be inspected closely, or if required, under a microscope.
Sometimes, chips are provided without identifying print, or have it sanded off to prevent corporate
theft.

Components on the ExpLoRer
Luckily for us, SODAQ has made this quite easy for us, as they provide schematics with all the compo-
nents and their data connections. This means that we know what to connect to, and how to connect
to it. Combine this with the freely available data sheet and user guide, and (often) a library written to
interface with that component: implementation is quite well supported.

From these schematics, it is clear that the Explorer has quite a number of components, of which
some cannot be interfaced with, and will continue to draw current (the MCP73831 LiPo charger, for
example).

On the other hand, we have a list of components that are interacted with by the microprocessor
(the ATSAMD21), be it through serial ports, IኼC, or SPI:

• RN2483 (EU) or RN2903 (US): LoRa module,

• RN4871: Bluetooth 4.0 module,

5

6

• SST25PF040C: flash storage,

• ATECC508A: Crypto-authentication chip.

Inspecting all data sheets, it is clear that each of the chips listed have some form of sleep or power-
down mode, which is implemented to limit the power consumption when the component is not required.
Note that from this point forward, RN2483 is used to identify the LoRa module, as implementation is
identical for the RN2903.

Component Sleep Mode
As previously mentioned, apart from the microprocessor (deep) sleep power reduction, the compo-
nents, too, can be set to sleep for minimum power consumption.

ATSAMD21
Setting the microprocessor (the ATSAMD21) to deep sleep requires very few steps. Ensuring that the
microprocessor wakes up again, some interrupts, such as a watchdog timer, must be set. To implement
this, the Sodaq_wdt library must be installed through the Arduino Library manager. This watchdog timer
as implemented draws an insignificant amount of current. Basic setup:

#inc lude <Sodaq_wdt . h>

void setup ()
{

sodaq_wdt_enable (WDT_PERIOD_8X) ; / / se t wdt at 8 second i n t e r v a l
sodaq_wdt_reset () ;
sodaq_wdt_safe_delay (1000); / / not requi red , but t h i s should

/ / be used ins tead of de lay () .

SCBዅ>SCR |= SCB_SCR_SLEEPDEEP_Msk ; / / se t s leep mode to deep s leep
}

void loop ()
{

sodaq_wdt_reset () ; / / Resets the wdt to prevent dev ice r e s e t t i n g
__WFI () ; / / Wait For I n t e r r up t ዅ s leeps accord ing to s leep mode

}

RN2483
The RN2483 LoRa module communicates to the microprocessor via serial: Serial2. Multiple Arduino-
compatible libraries exist, but the one used is: Sodaq_RN2483 (this can be found and installed through
the Arduino library manager). Using the following piece of code, the library is imported, and the module
is put to sleep.

#inc lude <Sodaq_RN2483 . h>
#def ine l o r a S e r i a l S e r i a l 2

void setup ()
{

l o r a S e r i a l . begin (LoRaBee . getDefaultBaudRate ()) ;
LoRaBee . i n i t (l o r a S e r i a l , LORA_RESET) ;
LoRaBee . s leep () ;

}

It’s as simple as that! The last command sets the RN2483 to its lowest power mode, with a fast
response to wake up. Note that the serial communication cannot be ended, as that wakes up the
module, similarly, do not send multiple sleep commands in a row, as the module (while going to sleep)
gets confused and wakes up instead.

RN4871
The RN4871 bluetooth module also communicates via serial: Serial1. Here too, multiple libraries are
available. The used library is: Microchip_RN487x; make sure that the library version is 1.0.2 or
higher! The code to required to put the module to sleep is quite simple:

7

#inc lude <RN487x_BLE . h>
#def ine b l e S e r i a l S e r i a l 1

void setup ()
{

rn487xBle . hwIn i t () ;
b l e S e r i a l . begin (rn487xBle . getDefaultBaudRate ()) ;
rn487xBle . i n i t B l eS t r eam (& b l e S e r i a l) ;

/ / Enter dormant mode
rn487xBle . enterCommandMode () ;
rn487xBle . dormantMode () ;

b l e S e r i a l . end () ;
}

Here, we do not use the low-power mode and hardware-sleep commands, since these commands
set the module into low power mode, but the sleep mode power is not achieved. Rather, using dor-
mantMode, the module is set to its absolute lowest power mode. To use it after this command is issued,
requires a power cycle or by calling hwInit again.

Once dormant, it is safe to disconnect the serial line for additional power savings.

SST25PF040C
The SST25PF modules communicate through SPI. a different protocol with a different setup. These
chips have been found to enter sleep automatically, or not; supposedly due to different firmware. Since
a library is not written for this chip yet, a significant amount of code is required. The following code
describes the actions required to set the flash to sleep, whether it went to sleep automatically or not:

#inc lude <SPI . h>

void DFlashUltraDeepSleep ()
{

stat ic const u in t8_ t SS_DFLASH = 44 ;
SPI . begin () ;

/ / I n i t i a l i s e the CS pin f o r the data f l a s h
pinMode (SS_DFLASH , OUTPUT) ;
d i g i t a lW r i t e (SS_DFLASH , HIGH) ;

t ransmi t (0xB9) ;

SPI . end () ; / / c l ose SPI and rese t p ins to low power s t a t e
r e se tSP IP ins () ;

}

void t ransmi t (u i n t8_ t va l)
{

SPISe t t i ngs s e t t i n g s ;
d i g i t a lW r i t e (SS_DFLASH , LOW) ;
SPI . beg inTransact ion (s e t t i n g s) ;

SPI . t r a n s f e r (va l) ;

SPI . endTransact ion () ;
d i g i t a lW r i t e (SS_DFLASH , HIGH) ;

delayMicroseconds (1000);
}

void r e se tSP IP ins ()
{

r e se tP i n (MISO) ;
r e se tP i n (MOSI) ;
r e se tP i n (SCK) ;
r e se tP i n (SS_DFLASH) ;

}

void r e se tP i n (u in t8_ t p in)
{

8

PORTዅ>Group [g_AP inDescr ip t ion [p in] . u l Po r t] .
PINCFG[g_AP inDescr ip t ion [p in] . u l P i n] . reg=(u in t8_ t) (0) ;

PORTዅ>Group [g_AP inDescr ip t ion [p in] . u l Po r t] .
DIRCLR . reg = (u in t32_t)(1<<g_AP inDescr ip t ion [p in] . u l P i n) ;

PORTዅ>Group [g_AP inDescr ip t ion [p in] . u l Po r t] .
OUTCLR . reg = (u in t32_t) (1<<g_AP inDescr ip t ion [p in] . u l P i n) ;

}

It should be noted that this chip can remain in low-power for most LoRa related uses, since the
maximum duty-cycle is limited per device, and the ATSAMD21 has a significant amount of flash storage
on-chip.

The function resetPin resets the pin to the state it is in by default; this is programmed in the board
file by SODAQ to be the lowest current leakage state for the microprocessor.

ATECC508A
The ATECC508A communicates via IኼC. Compared to the previous devices, the ATECC is automatically
in sleep mode. The data sheet specifies that the sleep mode current draw is only guaranteed if the IኼC
SCL (clock line) is either 𝐿𝑂𝑊 or unconnected; not initializing the Wire library ensures this.

Setting the device to sleep once it has been used will be discussed where the chip is used.

Low Power Sketch
Combining all the above into a single program provides a very low power consumption: less than 15𝜇A
at 3.75V (approximately 56𝜇W)!

Needless to say, some additional lines are added, specifically to disable and disconnect the USB
port in order to prevent as much leakage current. as possible, it will be called at the end of the setup
function.
#include <Sodaq_RN2483 . h>
#include <Sodaq_wdt . h>
#include <SPI . h>
#include <RN487x_BLE . h>

#define b l e S e r i a l S e r i a l 1
#define l o r a S e r i a l S e r i a l 2

void setup ()
{

/ / LoRa module connect ion and s leep
l o r a S e r i a l . begin (LoRaBee . getDefaultBaudRate ()) ;
LoRaBee . i n i t (l o r a S e r i a l , LORA_RESET) ;
LoRaBee . s leep () ;

/ / BLE module s leep
rn487xBle . hwIn i t () ;
b l e S e r i a l . begin (rn487xBle . getDefaultBaudRate ()) ;
rn487xBle . i n i t B l eS t r eam (& b l e S e r i a l) ;
rn487xBle . enterCommandMode () ;
rn487xBle . dormantMode () ;
b l e S e r i a l . end () ;

/ / se t FLASH to deep s leep & rese t SPI p ins f o r min . energy consumption
DFlashUltraDeepSleep () ;

SCBዅ>SCR |= SCB_SCR_SLEEPDEEP_Msk ; / / se t s leep mode ዅ> deep s leep
USBዅ>DEVICE . CTRLA . reg &= ~USB_CTRLA_ENABLE ; / / D i sab le USB

}

void loop ()
{
__WFI () ; / / c a l l again f o r repeat i f i n t e r r up ted

9

}

/ / FLASH ch ip s leep func t i ons
void DFlashUltraDeepSleep ()
{

stat ic const u in t8_ t SS_DFLASH = 44 ;
SPI . begin () ;
pinMode (SS_DFLASH , OUTPUT) ;
d i g i t a lW r i t e (SS_DFLASH , HIGH) ;
t ransmi t (0xB9) ;
SPI . end () ;
rese tSP IP ins () ;

}

void t ransmi t (u i n t8_ t va l)
{
SPISe t t i ngs s e t t i n g s ;
d i g i t a lW r i t e (SS_DFLASH , LOW) ;
SPI . beg inTransact ion (s e t t i n g s) ;
SPI . t r a n s f e r (va l) ;
SPI . endTransact ion () ;
d i g i t a lW r i t e (SS_DFLASH , HIGH) ;
delayMicroseconds (1000);

}

void r e se tSP IP ins ()
{
r e se tP i n (MISO) ;
r e se tP i n (MOSI) ;
r e se tP i n (SCK) ;
r e se tP i n (SS_DFLASH) ;

}

void r e se tP i n (u in t8_ t p in)
{
PORTዅ>Group [g_AP inDescr ip t ion [p in] . u l Po r t] .
PINCFG[g_AP inDescr ip t ion [p in] . u l P i n] . reg=(u in t8_ t) (0) ;
PORTዅ>Group [g_AP inDescr ip t ion [p in] . u l Po r t] .
DIRCLR . reg = (u in t32_t)(1<<g_AP inDescr ip t ion [p in] . u l P i n) ;
PORTዅ>Group [g_AP inDescr ip t ion [p in] . u l Po r t] .
OUTCLR . reg = (u in t32_t) (1<<g_AP inDescr ip t ion [p in] . u l P i n) ;

}

Using the program above, the current draw achieved can be recorded, and is visualized in Figure 2.

Sending over LoRa and Sleeping
Now that we have a basis, it is time to collect some data over a period of time, and send this over LoRa
once a set is collected. Since an analog temperature sensor is included on the ExpLoRer, we will use
that for this example. The data sheet of the thermistor (MCP9700AT) provides the required conversion
formula.

In order to record this temperature, the following initialization and conversion come to mind:

u in t8_ t message [2] ;

void setup ()
{

pinMode (TEMP_SENSOR, INPUT) ;
getTemperature () ;

/ / now do something with contents of message
}

void getTemperature ()
{
/*

10

Figure 2: ExpLoRer Low Power. Post start-up 10 second snapshot, 88.5᎙A, 3.75V.

* Note : even though i t ’ s supposedly c a l i b r a t e d to have
* output 500mV at 0 deg C , the temperature i s
* found to be of fዅset . A c a l i b r a t i o n i s recommended
*/

int int_temp ;
u in t8_ t negat i veF lag ;

f loat mVolts = (f loat) analogRead (TEMP_SENSOR) * 3300.0 / 1024.0;
f loat temp = (mVolts ዅ 500.0) / 10.0;

temp *= 100;

i f (temp < 0) negat i veF lag = 0x80 ;
else negat i veF lag = 0x00 ;

int_temp = abs ((int) temp) ;

message [0] = (int_temp >> 8) | negat i veF lag ;
message [1] = int_temp & 0xFF ;

}

This implementation returns a big-endian 2-byte signed integer, stored in the external array named
message. The limits of this temperature range are ± 65.5 degrees Celsius.

The LoRa protocol specifies different communication settings that allow for increased communica-
tion link stability, that may be required due to a longer range for transmission, or obstacles. Typically
used are Spreading Factor (SF) 7 and SF 12, for devices close to the gateway and those further away
from the gateway, respectively.

With each step in Spreading Factor, the time-on-air is doubled, making the difference between SF7
and SF12 is a factor 32. The energy required for this transmission is then expected to scale similarly.

While the LoRa module is turned on, however, not only data is transmitted: before data transmission,
a ’blank’ signal is transmitted to prepare the gateway and provide timing of the signal. Additionally, the
LoRa protocol has two receive windows, spread over 2 seconds, to receive data and acknowledgement.

This means that the on-time of the LoRa module is largely determined by the receive window. This
can be seen in Table 1, which shows the total power consumption of an ExpLoRer when the LoRa
module is awake and transmitting. Interesting to note are the differences between SF 7 and SF 12:
SF 12 is only twice the period, and consumes only four times the energy: nowhere near the expected
factor 32!

The measured power consumption in Table 1 is shown in Figure 3. Note the high peak, which is

11

the effective transmission period: the trailing high power draw is the module active and waiting for its
receive windows.

Spreading Factor 4 Bytes sent 51 Bytes sent
Base deep sleep power 55.5𝜇W 55.5𝜇W
7 70mW, 2.4 sec 74mW, 2.5 sec
9 76mW, 2.6 sec 87mW, 2.8 sec
12 118mW, 3.7 sec 144mW, 5.2 sec

Table 1: ExpLoRer Power Consumption during LoRa transmission sequence.

Figure 3: 4-byte transmission sequence at Spreading Factor 7.

Implementing everything through the following code:
#include <Arduino . h>
#include <Sodaq_RN2483 . h>
#include <Sodaq_wdt . h>
#include <SPI . h>
#include <RN487x_BLE . h>
#include <RTCTimer . h>
#include <RTCZero . h>

#define CONSOLE_STREAM SERIAL_PORT_MONITOR

#define debugSer ia l Ser ia lUSB / / debug on USB
#define b l e S e r i a l S e r i a l 1 / / B luetooth module S e r i a l
#define l o r a S e r i a l S e r i a l 2 / / LoRa module S e r i a l

#define LORA_BAUD 57600
#define DEBUG_BAUD 57600

#define NIBBLE_TO_HEX_CHAR(i) ((i <= 9) ? (’ 0 ’ + i) : (’A ’ ዅ 10 + i))
#define HIGH_NIBBLE (i) ((i >> 4) & 0x0F)
#define LOW_NIBBLE(i) (i & 0x0F)

RTCZero r t c ;
RTCTimer t imer ;

12

volat i le bool minuteFlag ;

/ /
/ / setup your constants here ! !
/ /
const u in t8_ t records_to_send = 2; / / se t t h i s to change the amount of records to send
const u in t8_ t record_every_x_minutes = 1; / / se t t h i s to the des i red i n t e r v a l i n minutes
const u in t8_ t sp read ing_ fac to r = 7; / / se t t h i s to the des i red LoRa spreading f a c t o r

/ / ***
/ / LoRa communication setup !

/ / t rue : use OTAA
/ / f a l s e : use ABP
bool OTAA = false ;

/ / ABP setup (dev ice address)
/ / USE <OUR OWN KE<S !
const u in t8_ t devAddr [4] =
{
0x00 , 0x00 , 0x00 , 0x00

};

/ / a pp l i c a t i o n sess ion key
/ / USE <OUR OWN KE<S !
const u in t8_ t appSKey [16] =
{
0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00

};

/ / network sess ion key
/ / USE <OUR OWN KE<S !
const u in t8_ t nwkSKey [16] =
{
0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00

};

/ / OTAA (dev ice EUI)
/ / With us ing the GetHWEUI () func t i on the HWEUI w i l l be used
stat ic u in t8_ t DevEUI [8]
{
0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00

};

const u in t8_ t AppEUI [8] =
{
0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00

};

const u in t8_ t AppKey [16] =
{
0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00

};

/ / ***
/ / setup

bool LoRa_sleeps = false ;
u i n t8_ t message [records_to_send *2];

void setup ()
{
sodaq_wdt_enable (WDT_PERIOD_8X) ; / / Enable the wdt at maximum i n t e r v a l
sodaq_wdt_reset () ;
sodaq_wdt_safe_delay (5000);

pinMode (TEMP_SENSOR, INPUT) ;

i n i t R t c () ;

13

SCBዅ>SCR |= SCB_SCR_SLEEPDEEP_Msk ; / / se t s SAMD s leep mode to deep s leep

/ / networks
l o r a S e r i a l . begin (LoRaBee . getDefaultBaudRate ()) ;
LoRaBee . i n i t (l o r a S e r i a l , LORA_RESET) ;
setupLoRa () ; / / se t the gears i n motion

i n i t R t cT ime r () ; / / t imer i n t e r r u p t > 1 minute i n t e r v a l

sodaq_wdt_reset () ;

Ser ia lUSB . f l u sh () ;
Ser ia lUSB . end () ;
USBDevice . detach () ;
USBዅ>DEVICE . CTRLA . reg &= ~USB_CTRLA_ENABLE ; / / D i sab le USB

s leep_setup () ;
}

/ / ***
/ / loop

/ / ar ray f o r temperature we wish to send ;
/ / here we ’ re tak ing a 6ዅvalue (12 bytes) ar ray to send at once
/ / intended to measure every n*60 seconds , send every x messages .

const u in t8_ t measurements_to_send = 6;
int temperature_array [measurements_to_send] ;
u in t8_ t l i s t _ i t e r = 0; / / v a r i a b l e to keep t rack of ar ray index and when to send

void loop ()
{

i f (sodaq_wdt_flag) {
sodaq_wdt_reset () ;
sodaq_wdt_flag = false ;

}

i f (minuteFlag) {
t imer . update () ;
minuteFlag = false ;

}

systemSleep () ;
}

/ / ***
/ / Sleep commands

void BT_powerdown ()
{
rn487xBle . hwIn i t () ;
b l e S e r i a l . begin (rn487xBle . getDefaultBaudRate ()) ;
rn487xBle . i n i t B l eS t r eam (& b l e S e r i a l) ;
rn487xBle . enterCommandMode () ;
rn487xBle . dormantMode () ;
b l e S e r i a l . end () ;

}

void s leep_setup ()
{

/ / se t FLASH to deep s leep & rese t SPI p ins f o r min . energy consumption
DFlashUltraDeepSleep () ;

sleep_LoRa () ;

/ / RN4871 BT/BLE module s leep
BT_powerdown () ;

}

void systemSleep () / / S ince only LoRa and MCU awake , on ly se t those to s leep

14

{
i f (! LoRa_sleeps) / / Sk ip i f LoRa i s as leep
{
sleep_LoRa () ;

}

noIn te r rup t s () ;
i f (! (sodaq_wdt_flag | | minuteFlag)) {
i n t e r r u p t s () ;
debugSer ia l . p r i n t l n (” S leep ing ”) ;
__WFI () ; / / SAMD s leep

}
i n t e r r u p t s () ;

}

void sleep_LoRa ()
{

l o r a S e r i a l . f l u s h () ;
LoRaBee . s leep () ;
LoRa_sleeps = true ;
sodaq_wdt_safe_delay (5) ; / / wi thout th i s , i t doesn ’ t s leep . . don ’ t know why

}

void wake_LoRa ()
{
LoRa_sleeps = false ;
LoRaBee .wakeUp () ;

}

/ / ***
/ / SST25PF040C F lash func t i ons (SPI)

void DFlashUltraDeepSleep ()
{

stat ic const u in t8_ t SS_DFLASH = 44 ;
/ / SPI i n i t i a l i s a t i o n
SPI . begin () ;

/ / I n i t i a l i s e the CS pin f o r the data f l a s h
pinMode (SS_DFLASH , OUTPUT) ;
d i g i t a lW r i t e (SS_DFLASH , HIGH) ;

t ransmi t (0xB9) ;

SPI . end () ;

/ / Resets the p ins used
r e se tSP IP ins () ;

}

void t ransmi t (u i n t8_ t va l)
{
SPISe t t i ngs s e t t i n g s ;
d i g i t a lW r i t e (SS_DFLASH , LOW) ;
SPI . beg inTransact ion (s e t t i n g s) ;

SPI . t r a n s f e r (va l) ;

SPI . endTransact ion () ;
d i g i t a lW r i t e (SS_DFLASH , HIGH) ;

delayMicroseconds (1000);
}

void r e se tSP IP ins ()
{
r e se tP i n (MISO) ;
r e se tP i n (MOSI) ;
r e se tP i n (SCK) ;
r e se tP i n (SS_DFLASH) ;

15

}

void r e se tP i n (u in t8_ t p in)
{
PORTዅ>Group [g_AP inDescr ip t ion [p in] . u l Po r t] .
PINCFG[g_AP inDescr ip t ion [p in] . u l P i n] . reg=(u in t8_ t) (0) ;
PORTዅ>Group [g_AP inDescr ip t ion [p in] . u l Po r t] .
DIRCLR . reg = (u in t32_t)(1<<g_AP inDescr ip t ion [p in] . u l P i n) ;
PORTዅ>Group [g_AP inDescr ip t ion [p in] . u l Po r t] .
OUTCLR . reg = (u in t32_t) (1<<g_AP inDescr ip t ion [p in] . u l P i n) ;

}

/ / ***
/ / RN2483/RN2903 LoRa commands
/ / f o r RN2903 : uncomment the setFsbChannels l i n e .

void setupLoRa ()
{
getHWEUI () ;

i f (!OTAA){
setupLoRaABP () ; / / ABP setup

} else {
setupLoRaOTAA () ; / / OTAA setup

}
/ / Uncomment the f o l l ow i ng l i n e to f o r the RN2903 with the A c t i l i t y Network .
/ / For OTAA, update the DEFAULT_FSB in the l i b r a r y
/ / LoRaBee . setFsbChannels (1) ;

LoRaBee . se tSpread ingFactor (sp read ing_ fac to r) ;

}

void setupLoRaABP () {
i f (LoRaBee . i n i tABP (l o r a S e r i a l , devAddr , appSKey , nwkSKey , true))
{
debugSer ia l . p r i n t l n (” Communication␣ to␣LoRaBEE␣ succes s fu l . ”) ;

}
else
{
debugSer ia l . p r i n t l n (” Communication␣ to␣LoRaBEE␣ f a i l e d ! ”) ;

}
}

void setupLoRaOTAA () {

i f (LoRaBee . in i tOTA (l o r a S e r i a l , DevEUI , AppEUI , AppKey , true))
{
debugSer ia l . p r i n t l n (” Network␣ connect ion␣ succes s fu l . ”) ;

}
else
{
debugSer ia l . p r i n t l n (” Network␣ connect ion␣ f a i l e d ! ”) ;

}
}

stat ic void getHWEUI () / / gets + s to res HWEUI
{
u in t8_ t len = LoRaBee . getHWEUI(DevEUI , sizeof (DevEUI)) ;

}

void send_message (u in t8_ t*val , s i z e _ t v a l _ s i z e) {
wake_LoRa () ;

/ / s ince the debug por t i s not enabled in t h i s example , the debug message i s not p r i n ted
switch (LoRaBee . send (1 , (u i n t8_ t*) va l , v a l _ s i z e)) / / send (port , payload , length)
{
case NoError :
debugSer ia l . p r i n t l n (” Success fu l ”) ;
break ;

case NoResponse :

16

debugSer ia l . p r i n t l n (”No␣Response ”) ;
break ;

case Timeout :
debugSer ia l . p r i n t l n (” Timeout . ␣ s t a r t i n g ␣20␣second␣delay ”) ;
de lay (20000);
break ;

case Pay loadS i zeEr ro r :
debugSer ia l . p r i n t l n (” Payload␣ too␣ l a rge ! ”) ;
break ;

case I n t e r n a l E r r o r :
debugSer ia l . p r i n t l n (” I n t e r na l ␣ Er ro r ;␣ r e s e t t i n g ␣module ”) ;
setupLoRa () ;
break ;

case Busy :
debugSer ia l . p r i n t l n (” LoRa␣module␣ ac t i v e ”) ;
de lay (10000);
break ;

case NetworkFata lE r ror :
debugSer ia l . p r i n t l n (” Network␣ connect ion␣ e r ro r ;␣ r e s e t t i n g ␣module ”) ;
setupLoRa () ;
break ;

case NotConnected :
debugSer ia l . p r i n t l n (” Not␣connected ;␣ r e s e t t i n g ␣module ”) ;
setupLoRa () ;
break ;

case NoAcknowledgment :
debugSer ia l . p r i n t l n (”No␣acknowledgement␣ rece ived ”) ;
break ;

default :
break ;

}
sleep_LoRa () ;

}

/ / ***
/ / Temperature Sensor func t i ons
/ / output : 2ዅbyte i n t cent iዅc e l c i u s (d i v i d e by 100 to type f l o a t f o r co r r e c t va lue) .

void getTemperature ()
{

int int_temp ;
u in t8_ t negat i veF lag ;

f loat mVolts = (f loat) analogRead (TEMP_SENSOR) * 3300.0 / 1024.0;
f loat temp = (mVolts ዅ 500.0) / 10.0;

temp *= 100;

i f (temp < 0) negat i veF lag = 0x80 ;
else negat i veF lag = 0x00 ;

int_temp = abs ((int) temp) ;

message [l i s t _ i t e r *2] = (int_temp >> 8) | negat i veF lag ;
message [l i s t _ i t e r *2 + 1] = int_temp & 0xFF ;

}

/ / ***
/ / RTC func t i ons

/ / I n i t i a l i z e s the RTC
void i n i t R t c ()
{

r t c . begin () ;

/ / Schedule the wakeup i n t e r r u p t f o r every minute
/ / Alarm i s t r i gge red 1 cyc l e a f t e r match
r t c . setAlarmSeconds (59) ;
r t c . enableAlarm (RTCZero : :MATCH_SS) ; / / alarm every minute

17

/ / At tach handler
r t c . a t t a ch In t e r r up t (r tcA larmHandler) ;

/ / Th is se t s i t to 2000ዅ01ዅ01
r t c . setEpoch (0) ;

}

/ / Runs every minute by the r t c alarm .
void r tcA larmHandler ()
{

minuteFlag = true ;
}

/ / I n i t i a l i z e s the RTC Timer
void i n i t R t cT ime r ()
{
debugSer ia l . p r i n t l n (” i n i t ␣ r t c ␣ t imer ”) ;
t imer . setNowCal lback (getNow) ; / / se t how to get the cur ren t t ime
t imer . a l l owMu l t i p l eEven t s () ;

resetRtcT imerEvents () ;
}

void resetRtcT imerEvents ()
{

/ / Schedule the de f au l t f i x event (i f a pp l i c ab l e)
t imer . every (record_every_x_minutes * 60 , measureTemperature) ;
debugSer ia l . p r i n t l n (” event␣ set ”) ;

}

/ / Returns cur ren t datet ime in seconds s ince epoch
u in t32_t getNow ()
{

return r t c . getEpoch () ;
}

/ / De fau l t event parameter
void measureTemperature (u in t32_t now)
{
getTemperature () ;

l i s t _ i t e r ++;

i f (! (l i s t _ i t e r < records_to_send)) {
send_message ((u in t8_ t*) &message , sizeof (message)) ;
l i s t _ i t e r = 0;

}
}

